Stunning image reveals the intricate structure of supersonic plasma
A simulation-generated image reveals how charge distributions and gas densities vary in the plasma that floats across our universe
By Alex Wilkins
31 May 2024
A plasma’s structure, with different colours representing varying charge and gas densities
James R. Beattie et al. 2024
The most detailed simulation of the chaotic supersonic plasma that floats across our universe has revealed an intricate map of swirling magnetic fields.
Clouds of charged particles, or plasmas, are ubiquitous in our universe and can exist at small scales, as with the solar wind, or cover vast distances, such as over entire galaxies. These clouds experience turbulence, similar to the air in Earth’s atmosphere, which dictates key characteristics of our universe, such as how magnetic fields vary over space or how quickly stars form.
However, the turbulence’s inherently chaotic nature, as well as the mix of very different plasma speeds, makes it impossible to predict the plasma’s behaviour in a mathematically exact way.
Advertisement
Read more
Is the universe conscious? It seems impossible until you do the maths
Now, James Beattie at Princeton University and his colleagues have run the largest chaotic plasma simulation of its kind, using the SuperMUC-NG supercomputer at the Leibniz Supercomputing Centre in Germany.
The researchers set up a plasma fixed over a 10,000-cube grid, which they artificially stirred to see how the turbulence rippled through it, similar to stirring a cup of coffee. The simulation would take 10,000 years to run on a standard single-core computer, says Beattie.